

Acute Debug Set

USER MANUAL

AIVION, Jahnstraße 12, 85661 Forstinning

Tel: +49(0)8121-2208-0 Fax: +49(0)8121-2208-22

www.aivion.com sales@avion.com

AIVION is a cooperation by Visual Communication Systems GmbH and eVision Systems GmbH

Table of contents

1.	Camera setup	3
2.	Connect TravelBus	3
3.	TBA (x64) Software	3
4.	Check connection	3
5.	Protocol and parameter selection	4
6.	Capture data	5

1. Camera setup

Set up the camera setup with the Acute PA board instead of the normal PA board.

2. Connect TravelBus

Connect the measuring clamp of pin 00 to TX of the RS232 interface and connect the measuring clamp of pin 01 to RX of the RS232 interface.

PA-board connected to pin 00 and pin 01 of TravelBus

3. TBA (x64) software

Download the Software ,[Logic Analyzer] TravelBus series' from the Acute website:

https://www.acute.com.tw/en/install

After installation, open the TBA (x64) software and select 'Add Protocol Analyzer'.

4. Check connection

If you have previously connected the TravelBus Analyzer to the computer, it should already be connected to the software.

Bottom left corner of the TBA (x64) software

If the software is not connected to the TravelBus Analyzer, you can set up your connection via 'Connect'.

Upper left corner of the TBA (x64) software

5. Protocol and parameter selection

You can select the protocol under 'Protocol'.

Upper left corner of the TBA (x64) software

Protocol Select		×
12C MIPI 13C R\$232/422/485 SPI 1.	Channel 2. Tx $0 \Rightarrow \pm 0$ 3 5 9 9 1 3 5 CLK \pm SDA ± 0 2 3 3 0 2 6 $\pm \pm$ SCL Baurd Pate: Deco. Dos. TX [0] $= KHz$	
3.	Options Line Wrap Data Bits 8 Parity None Stop Bits 1 Polarity Idle Low	
	Threshold 1.60V Quick Setup	
	⊙ Default 5. ✓ OK ★ Cancel	

Protocol window

- 1. First select the protocol 'RS232/422/485' on the left side.
- 2. Select Tx and Rx as you have connected the measuring clamps on the PA-board under <u>2. Connect TravelBus</u>.
- 3. Select the baud rate which is used to send the VISCA commands (usually 9600 Baud).
- 4. In Options select 8 Data Bits, None Parity, 1 Stop Bit, 'Idle Low' under Polarity and '8 bytes' for Data Length.
- 5. Save the settings with 'Ok'.

6. Capture data

Click on 'Go' to start recording and on 'Stop' to stop recording.

Upper left corner of the TBA (x64) software

	Timestamp (h:m:s.ms.us.ns dur)	Status Data (h)									
1											
2	16:22:32.518.960.000 0 (Feb-21-2024)	Rx	81	09	00	02	FF				
3	16:22:32.524.361.000 005.401ms	Тх	90	50	00	20	04	66	01	00	
4	16:22:32.532.670.000 008.309ms	Тх	03	FF							
5	16:22:32.635.856.000 103.186ms	Rx	81	09	04	24	72	FF	81	09	
6	16:22:32.642.333.000 006.477ms	Тх	90	50	00	08	FF				
7	16:22:32.644.350.000 002.017ms	Rx	04	24	74	FF	81	09	04	43	
8	16:22:32.648.591.000 004.241ms	Тх	90	50	00	00	FF	90	50	00	
9	16:22:32.652.842.000 004.251ms	Rx	FF	81	09	04	44	FF	81	09	
10	16:22:32.657.011.000 004.169ms	Тх	00	00	A 0	FF	90	50	00	00	
11	16:22:32.661.333.000 004.322ms	Rx	04	4A	FF	81	09	04	4C	FF	
12	16:22:32.665.320.000 003.987ms	Тх	00	A 0	FF	90	50	00	00	00	
13	16:22:32.669.822.000 004.502ms	Rx	81	09	04	4B	FF	81	01	04	
14	16:22:32.673.629.000 003.807ms	Тх	02	FF	90	50	00	00	00	00	
15	16:22:32.678.316.000 004.687ms	Rx	36	00	FF						
16	16:22:32.681.940.000 003.624ms	Тх	FF	90	50	00	00	00	07	FF	
17	16:22:32.690.248.000 008.308ms	Тх	90	41	FF						
18	16:22:32.703.316.000 013.068ms	Тх	90	51	FF						

The recorded data can then look like this:

Recorded VISCA data

